
ProUML

Amer	Yono: Major	in	SE
Corey	Taylor: Major	in	SE

Marin	Mirasol: Major	in	SE

Course	Instructor: Simon	Fan
Faculty	Advisor: Simon	Fan

Industry	Sponsor:	CSUSM	CSTEM
Project	Mentor:	Simon	Fan

Professor

A	capstone	project	report	submitted	to	the	faculty	of
Computer	Science	and	Information	Systems
California	State	University,	San	Marcos

March	2023
(Version	3.5)

Technical	Report	Series:	CSU-SM-CSIS-Class2023-Sec-001-Team-001

Team 001

Page 1



Table of Contents
Cover Page 1
Table of Contents 2
1. Abstract 3
2. Report Revision History 4

2.1. Changes in Version 1.5 5
2.2. Changes in Version 2.0 5
2.3. Changes in Version 2.5 5
2.4. Changes in Version 3.0 5
2.5. Changes in Version 3.5 6

3. Problem Statement 6
3.1. Business Background 6
3.2. Needs 6
3.3. Objectives 6

4. Requirements 7
4.1. User Requirements 7

4.1.1. Glossary of Relevant Domain Terminology 7
4.1.2. User Groups 8
4.1.3. Functional Requirements 9

4.1.3.1. Project Scope 9
4.1.3.2. User Scenarios 9
4.1.3.3. User Functional Requirements 10

4.1.4. Non-functional Requirements 10
4.1.4.1. Product: Usability Requirements 10

4.2. System Requirements 10
4.2.1. Functional Requirements 10

4.2.1.1.System Functional Requirements 10
4.2.2. Non-functional Requirements 11

4.2.2.1. Product: Usability Requirements 11
4.3. Requirements Trace Table 11

5. Exploratory Studies 12
5.1. Relevant Development Frameworks 12
5.2. Relevant Solution Techniques 13
5.3. Broader Impacts 14

6. System Design 14
6.1. Architectural Design 14
6.4. Behavioral Design 15
6.5. Design Alternatives & Decision Rationale 19

7. System Implementation 19
7.1. Programming Languages and Tools 19
7.2. Coding Conventions 20
7.3. Code Version Control 20
7.4. Implementation Alternatives & Decision Rationale 20

Team 001

Page 2



8. System Testing 21
8.1. Test Automation Framework 21

8.1.1. Steps for Installing Test Framework 21
8.1.2. Steps for Running Test Cases 22

8.2. Test Case Design 22
8.2.1. Test Suites 22
8.2.2. Unit Test Cases 22

8.3. Test Case Execution Report 23
8.3.1. Unit Testing Report 23

9. Challenges and Open Issues 24
9.1. Challenges Faced in Requirements Engineering 24

10. System Manuals 24
10.1. Instructions for System Development 24

10.1.1. How to set up development environment 24
12. References 25
Appendix U 26
Appendix R 32
Appendix T 43
Appendix TE 52

Team 001

Page 3



1. Abstract
With the complexity of software increasing, as technology becomes more advanced, many
software engineers today need to use tools to make complex software systems more
understandable. One tool that many software engineers use is Unified Modeling Language
(UML), which is a modeling language that visualizes software designs from various
perspectives. Although UML helps to make software design more understandable, it is very
time-consuming because engineers need to manually construct UML diagrams, and then
translate diagrams into cod.e, and vice versa. With ProUML, engineers can easily import
source code from software projects to translate automatically into UML. Conversely, they can
do the opposite, which is to translate constructed UML diagrams into source code. Not only is
ProUML convenient for design activities, but it can also be easily expanded to support newer
programming languages if other developers are willing to implement additional language
support for our system. Overall, with ProUML, our goals are to make software development
more efficient, less costly, and less time-consuming.

2. Report Revision History

2.1. Changes in Version 1.5
Several revisions have been made in this technical report version to fix issues with the last
report version or include updates that have been made with our progress of developing
ProUML. One change made in this version was the further clarification of the types of users
we want to support in section 3.3. “Objectives,” as we clarified the “variety of users” that we
want to support includes developers, students, and instructors that use UML and may
collaborate. Another change in this report version was section 4.1.2. “User Groups,” as we
made our user groups more specific by including different types of users based on the
collaboration feature we plan to implement in ProUML. The user groups that we included are
“ProUML Project Owners” and “ProUML Project Collaborators.” As a result of expanding the
user groups, we also edited the use case diagram in section 4.1.3.1. “Project Scope” to reflect
the two user groups we specified in this version. Section 4.1.3.2. “User Scenarios” was also
changed, as we added another user scenario to “Edit UML Diagram.” This scenario was added
since collaborators can edit ProUML projects that are already created from the project owner’s
user scenario to “Create UML Diagram.” Additional changes in the report’s format and
wording have also been made to make the report more concise and easier to read, which
include the rewording of some requirements to make the descriptions shorter and more
concise, and the additions of captions below figures and tables for references and descriptions.
The bottom margins have also been increased to make more room for page numbers and our
team number has been added on the top right of each page. After making these changes, the
report is easier to read and has been updated to reflect the latest progress of ProUML’s
development. In the future, we will continue to make revisions to this report to reflect any
changes we make and to improve the readability of this report.

Team 001

Page 4



2.2. Changes in Version 2.0
Several additions have been made in this technical report version as we have progressed with our
development of ProUML. As we have implemented some of our production code, we have
designed some behavior diagrams. The behavior diagrams, which can be found in the added
Section 6.4 “Behavioral Design,” includes two sequence diagrams, which visualize the
sequences of how ProUML works in different scenarios. Additionally, since we are practicing
Test Driven Development (TDD), we have also added Section 8 “System Testing,” which
includes several sub-sections that discuss how we set up our testing environment, ran our test
cases, designed our test suite and cases, and summaries of our execution report. As a result of
adding our testing processes, we have also added Appendix T and Appendix TE, which go more
in-depth into our tests and test executions. As we continue developing ProUML, we will
continue to add more sections and will make revisions in future report versions to reflect our
latest progress.

2.3. Changes in Version 2.5
A couple of minor tweaks have been made in this technical report version, which include
wording changes, diagram tweaks, and a diagram addition. We made some wording changes to
make this report more concise. In terms of the diagram tweaks, we initially made some wording
mistakes on some of our diagrams in version 2.0, which include our high level architectural
diagram in section 6.1 “Architectural Design,” and our general user activity diagram in Section
6.2 “Behavioral Design.” In addition to tweaking our existing diagrams, we also added an
additional transpiler activity diagram in Section 6.2 “Behavioral Design” to expand on the
“Transpile Program into JSON” activity on the general user activity diagram. With these
changes, this report should be more concise syntactically and our diagrams in this report version
should be easier to understand.

2.4. Changes in Version 3.0
Some additions have been made in this report to reflect the progress of implementing the
frontend and having it function with the backend of ProUML. First, we included the additional
tools that we began using during this phase of development to Section 7.1 “Programming
Languages and Tools.” The added tools in this section include: Next.js used for implementing
our frontend in React with server-side rendering to function with our backend, Redis used for the
live sharing feature, Postgres for database storage, and Tailwind for customizing our user
interface. Additionally, as a result of implementing our frontend, we added another activity
diagram to Section 6.4 “Behavior Design” to demonstrate some of the user interaction activities.
Specifically, this diagram addition portrays the user activities when in the diagram editor page on
ProUML, which is a primary feature of our application. After including these revisions, the
diagram editor logic, the frontend of ProUML, and how the frontend works with the backend
should be more clear.

Team 001

Page 5



2.5. Changes in Version 3.5
One minor tweak has been made in this technical report version, as we added Section 6.5
“Design Alternatives & Decision Rationale” and Section 7.4 “Implementation Alternatives &
Decision Rationale.” The purpose of Section 6.5 is to visualize the design of the live-sharing
feature in a diagram format. This diagram shows the communications between users, servers, and
databases. Section 7.4 serves to go more in-depth about our live-sharing design and explains
Section 6.5’s diagram in more detail. With the changes made in this report version, our
live-sharing feature works with communications between users, servers, and databases.

3. Problem Statement

3.1. Business Background
ProUML is an existing web application that allows users to translate from Java to UML. The
current system of ProUML has been developed using a variety of languages and frameworks.
Some of the languages used to develop ProUML include Go for hosting the website and React
in TypeScript for the front end of the application. The frameworks that are used in ProUML
include AntV for frontend diagram design support and supabase for user authentication and
account management. ProUML is also open source, so other developers can also contribute to
the application’s development. Although ProUML is already an existing application, it is still
incomplete and needs more functionalities and feature support to be a fully-functioning web
application that is beneficial for software engineers and students.

3.2. Needs
There are many reasons why ProUML is needed in today’s software engineering environment.
For one, ProUML helps to make the process of software development more efficient, as it
takes away the time required to translate between Java to UML and vice versa. Additionally,
ProUML promotes good software engineering practices because using UML helps software
engineers easily visualize large and complex software systems, which can improve the overall
understanding of more complex software systems. Lastly, with the open source development
of ProUML, the capabilities are endless with this web application, as we and other developers
can collaborate to make a system that is more capable, supports a variety of programming
languages, and that provides many different tools that can be used by software engineers and
students for designing software. Overall, ProUML is an application that can be beneficial to
the software engineering industry and its development is necessary since it can help to
improve the efficiency of software development, can improve the understanding of software,
and can easily be expanded to an even greater and more useful system.

3.3. Objectives
We hope to extend the current system of ProUML into a system that can support a variety of
users, such as developers, students, and instructors that utilize UML and may collaborate. We
also hope that our system can support a variety of useful features that can make the application
more usable and beneficial for use. For instance, a feature that we plan to implement, which
would be a very helpful feature for users, is to give the users the ability to collaborate with
others on ProUML diagrams. From working on ProUML, we also want to learn more about

Team 001

Page 6



frontend web frameworks, such as AntV. As a whole, our team has many goals that we plan to
achieve while working on ProUML, and these goals include expanding ProUML’s current
system, making ProUML more usable, and using as well as learning more about the
frameworks used in ProUML.

4. Requirements

4.1. User Requirements
4.1.1. Glossary of Relevant Domain Terminology

Unified Modeling Language (UML): Language used to visualize software code into classes
with their associations to other classes in the code.

UML Class Diagram: UML visualization of the code in an application, package or file in an
application.

Java: Object-oriented programming language that can be used to develop many different types
of software applications.

Java Keywords: Important words in Java that define certain aspects of the code.

Variables: Pieces of data in Java that can store specific values based on its data type.

Methods: Functions that can repeatedly be used when their implementations are needed.

Class: Keyword in Java that defines special object(s) that have specific properties, which can
include variables and/or methods.

Class Attributes: The different variables that are defined and used within a class.

Class Functions: The methods that are defined and used within a class.

Class Associations: How classes interact and relate with each other.

Object: An instance of a class.

Parameters: Variables or data that are passed to methods when used.

Scope: The region, within code, where objects or variables can be used.

Interface: Java keyword that indicates when a class of empty methods can inherit child
classes of shared properties.

Implements: Java keyword that indicates when a class is a child of an interface class and
implements the empty methods from the interface class.

Abstract: Java keyword that indicates when a class of implemented methods can inherit child
classes of shared properties.

Extends: Java keyword that indicates when a class is a child of an abstract class, which may
implement additional methods or override the implemented methods of the abstract class.

Static: Java keyword that indicates when an object or variable defined in a class is specific to
the entire class, rather than different objects of the class.

Team 001

Page 7



Public: Java keyword that indicates when an object or variable defined in a class can be
accessed outside of the class’s implementation.

Private: Java keyword that indicates when an object or variable defined in a class can only be
accessed within the class’s implementation.

Final: Java keyword that indicates when the properties or values of a class or variable cannot
change after being declared.

Data Type: Defines what type of data can be stored in a variable, and comes in the Java
keywords byte, short, int, long, float, double, boolean, and char.

Byte: Java keyword that defines a data type of a variable that can store whole numbers from
-128 to 127.

Short: Java keyword that defines the data type of a variable that stores whole numbers from
-32,768 to 32,767.

Int: Java keyword that defines the data type of a variable that stores whole numbers from
-2,147,483,648 to 2,147,483,647.

Long: Java keyword that defines the data type of a variable that stores whole numbers from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Float: Java keyword that defines the data type of a variable that stores fractional numbers with
up to 6 to 7 decimal points.

Double: Java keyword that defines the data type of a variable that stores fractional numbers
with up to 15 decimal points.

Boolean: Java keyword that defines the data type of a variable that stores true or false values.

Char: Java keyword that defines the data type of a variable that stores a single character.

JavaScript Object Notation (JSON): File format that stores data structures and objects.

Parse: Analyzing and organizing text into parts.

Java Package: A folder of several Java files.

4.1.2. User Groups

ProUML Project Owners:Want to use the application to create UML diagrams, translate
from Java code to a UML class diagram, export a UML class diagram to Java boilerplate code,
save UML projects, and collaborate on UML projects with others. These users have ultimate
ownership over their created diagram projects, as they can edit, delete, and share their projects
with possible collaborators.

ProUML Project Collaborators:Want to collaborate with a ProUML project owner to edit
and contribute to the project owner’s project. In order to have access to a project owner’s
project and collaborate on it, the project owner must explicitly share their project with these
types of users. These users have partial ownership over projects they collaborate in, as they
cannot delete an owner’s project.

Team 001

Page 8



4.1.3. Functional Requirements

4.1.3.1. Project Scope:

Refer to Table 4.1 in Appendix U for more information

4.1.3.2. User Scenarios

UC-001 (“Create UML Diagram”): A primary-level use case, where the user is allowed to
create a diagram that is either pre-configured and structured from a template or is empty for
the user to manipulate via a diagram editor. (Refer to Table 4.2 in Appendix U)

UC-002 (“Translate Between Java and UML”): A primary-level use case, where the user is
able to import Java files and have them translated into UML diagram form, while also being
able to export completed UML diagrams into Java source code.
(Refer to Table 4.3 in Appendix U)

UC-003 (“Save UML Project”): A primary-level use case, where the user can save any
progress of a UML diagram and create/resume any other diagram in the editor.
(Refer to Table 4.4 in Appendix U)

UC-004 (“Collaborate On ProUML Project”): A primary-level use case, which allows the
user to collaborate on a project with other users that are actively working on the same project,
with real-time updates. (Refer to Table 4.5 in Appendix U)

Team 001

Page 9



UC-005 (“Edit UML Diagram”): A primary-level use case, where the user is allowed to edit
an already-existing diagram that either appears in their saved diagrams or in their collaborated
projects. (Refer to Table 4.6 in Appendix U)

4.1.3.3. User Functional Requirements:

UF-A: Users shall be able to create and edit UML diagrams.
(Refer to Table 4.7 in Appendix R)

UF-B: Users shall be able to translate their Java code to UML and vice versa.
(Refer to Table 4.8 in Appendix R)

UF-C: Users shall be able to save their UML diagram data on ProUML.
(Refer to Table 4.9 in Appendix R)

UF-D: Users shall be able to collaborate with others on ProUML projects.
(Refer to Table 4.10 in Appendix R)

4.1.4. Non-functional Requirements

4.1.4.1. Product: Usability Requirements

UP-01: Users shall be able to use a web application that is extendable, customizable, and easy
to use. (Refer to Table 4.11 in Appendix R)

4.2. System Requirements
4.2.1. Functional Requirements

4.2.1.1. System Functional Requirements

SF-A-01: The system shall provide a diagram editor designed specifically for UML diagram
editing. (Refer to Table 4.12 in Appendix R)

SF-A-02: The system shall provide a button that allows users to add UML class shapes to their
UML diagrams. (Refer to Table 4.13 in Appendix R)

SF-A-03: The system shall provide a sidebar for UML class shapes when these shapes are
clicked on, where the class name, class associations, whether the class is an interface or not,
attributes and methods can be edited by the users. (Refer to Table 4.14 in Appendix R)

SF-B-01: The system shall be able to comprehend Java code into classes, class associations,
and class functions by understanding Java class names, attributes, and keywords for Java to
UML translation. (Refer to Table 4.15 in Appendix R)

SF-B-02: The system shall be able to organize completed UML diagrams into Java code for
UML to Java translation. (Refer to Table 4.16 in Appendix R)

SF-B-03: The system shall preserve imported code that is not needed in UML diagram
translation for UML to Java translation. (Refer to Table 4.17 in Appendix R)

SF-C-01: The system shall support user profiles with authentication.
(Refer to Table 4.18 in Appendix R)

Team 001

Page 10



SF-C-02: The system shall save user data and associate the data with specific user profiles in a
database. (Refer to Table 4.19 in Appendix R)

SF-C-03: The system shall translate UML diagrams to a text file that can be saved in a
database. (Refer to Table 4.20 in Appendix R)

SF-D-01: The system shall support live sharing by using user-to-user communication.
(Refer to Table 4.21 in Appendix R)

SF-D-02: The system shall be able to save collaborated projects in real time.
(Refer to Table 4.22 in Appendix R)

4.2.2. Non-functional Requirements

4.2.2.1. Product: Usability Requirements

SP-01-01: The system shall provide a user login page where users can log into their accounts.
(Refer to Table 4.23 in Appendix R)

SP-01-02: The system shall provide a dashboard page with the ability to import source code to
translate to Java code, start a UML diagram from scratch, or choose a template design pattern
diagram to start from. (Refer to Table 4.24 in Appendix R)

SP-01-03: The system shall allow users to edit the user interface with dark and light modes.
(Refer to Table 4.25 in Appendix R)

4.3. Requirements Trace Table

User Requirements System Requirements

Users shall be able to
create and edit UML
diagrams.

The system shall provide a diagram editor designed
specifically for UML diagram editing.

The system shall provide a button that allows users to add
UML class shapes to their UML diagrams.

The system shall provide a sidebar for UML class shapes
when these shapes are clicked on, where the class name,
class associations, whether the class is an interface or not,
and attributes and methods can be edited by the users.

Users shall be able to
translate their Java
code to UML and
vice versa.

The system shall be able to comprehend Java code into
classes, class associations, and class functions by
understanding Java class names, attributes, and keywords.

The system shall be able to organize completed UML
diagrams into Java code.

The system shall preserve imported code that is not needed
in UML diagram translation.

Team 001

Page 11



Users shall be able to
save their UML
diagram data on
ProUML.

The system shall support user profiles with authentication.

The system shall save user data and associate the data with
specific user profiles in a database.

The system shall translate UML diagrams to a text file that
can be saved in a database.

Users shall be able to
collaborate with
others on ProUML
projects.

The system shall support live sharing by using user-to-user
communication.

The system shall be able to save collaborative projects in
real-time.

Users shall be able to
use a web application
that is extendable,
customizable, and
easy to use.

The system shall provide a user login page where users can
log into their accounts.

The system shall provide a dashboard page with the ability
to import source code to translate to Java code, start a UML
diagram from scratch, or choose a template design pattern
diagram to start from.

The system shall allow users to edit the user interface with
dark and light modes.

Refer to Table 4.26 in Appendix R for more information

5. Exploratory Studies

5.1. Relevant Development Frameworks
Frameworks that we wanted to use in our system are React, Fiber, Material-UI, and AntV.
React is a frontend JavaScript framework that allows developers to make applications that are
declarative, efficient, and flexible [11]. There are dozens of other JavaScript frameworks that
allow for the same modularity as React, but we found React to be the most beneficial with its
ease of use in state management [11]. We are easily able to wrap our application around any
context we want, such as an authentication context, which would allow us to pass down data to
child components without having to pass down props through each child component manually
[11]. This is especially useful when creating deeply nested components that require the user’s
authorization session state [11]. Although we found that React is greatest in the state
management aspect, we did find that its routing system had major flaws, especially when it
came to search engine optimization (SEO), which would be a huge requirement for us in the
future when we want to advertise our service to developers in the industry [11]. There are
other frontend frameworks that alleviate the pains of SEO, but we decided to stick with React
because of how we are integrating it with Go and Fiber.

Team 001

Page 12



This brings us to why we decided to use Fiber as our HTTP handler framework with Go. Fiber
allows us to integrate custom-made SEO tags per page such as the page’s title and description
inside a single HTML file [14]. This will make our React setup slightly similar to a NextJS
setup, but not nearly the same [9]. NextJS automatically generates all HTML files to be served
as static on runtime, but in our setup, we would dynamically generate these tags on every load
[9]. This could be seen as repetitive and unnecessary, but this allows us to also pass along
authorization sessions to the user when they first fetch our website which would allow us to
save an extra HTTP request on the client’s side [9].

For the frontend user interface styling, we decided to use Material-UI compared to others such
as Bootstrap [11]. This is because of the easily customizable vast amount of features, but
simultaneously complex functionality Material-UI offers [11]. It holds a comprehensive suite
of UI tools that will help us ship our product out as fast as possible, while also looking
stunning to the human eye [11]. For our frontend class diagram editor, we decided to use a
framework to help us navigate the HTML canvas. It would make it considerably less
challenging bearing in mind that shapes would need to be dragged onto the canvas, editable,
and deletable. Our framework of choice is AntV X6 [4]. We decided to use AntV because of
its high level of usability and customization [3]. It provides us with numerous interactive
components, custom node capabilities, and on-demand listeners to facilitate the construction of
the UML class diagrams. AntV enables us to empower developers with real-time collaborative
editing, through the use of its graph listeners, alongside Fiber, connecting all online document
viewers through WebSockets [3].

5.2. Relevant Solution Techniques
Some relevant solution techniques that are open-source include AntV XFlow, PlantUML, and
ownCloud. AntV XFlow uses AntV X6, our diagramming framework, to create a complete
diagramming application [2]. We could not use XFlow as part of our solution for ProUML
because of its lack of enablement in customization, as we want to design our own diagram
editor with UML class-specific capabilities [5]. We found it very difficult to integrate custom
React components into the diagram, custom edges with text on multiple sides, and in-depth
functionalities with XFlow, but we are able to use it as a starting point to see how they
integrated their own tools into the application. XFlow has many features built on top of X6
that allow for a complete diagramming solution such as grouping shapes, adding, removing,
selecting, highlighting, and moving shapes, similar to draw.io, but their allowance of an
open-source product does not save us completely [3]. We are able to look over the open-source
code, to help implement some of the functionalities they did, but little to none of their
documentation is written in English. This is going to be the most difficult roadblock we are
going to encounter when developing the ProUML application.

For the diagram layout generator, we will be using PlantUML’s open-source code to assist us
in the development of our own diagrams based on the user’s imported code PlantUML also has
an algorithm for creating UML diagrams, which would also help us with generating the layout
of our UML diagrams after we transpile Java source code into UML diagram form [1].

Another open-source tool we could use is ownCloud, a Google Drive-like library that enables
users to share and collaborate with each other on documents [6]. We consider this resource
because we want our application to have an environment where users can collaborate with

Team 001

Page 13



each other on ProUML projects in real time. After researching these open-source libraries and
tools, we make sure to utilize them to the best of our abilities in the development of ProUML.

5.3. Broader Impacts
With ProUML, we hope to make a difference in software development by making the process
of development simpler and more efficient for aspiring software engineers, students, or anyone
who wants to develop software. Our system can change modern practices when it comes to
translating UML and code by allowing engineers to allocate more time to either UML
modeling or coding implementation, which can improve industry standards. As stated in our
project abstract, software complexity is constantly increasing over time, and with ProUML, we
can help reduce the confusion in complex software by making it simpler to construct UML
diagrams to help visualize these complex software systems.

6. System Design

6.1. Architectural Design

This figure visualizes the high-level architectural design of ProUML

Team 001

Page 14



6.4. Behavioral Design

This figure visualizes the functional sequence of the transpiler in ProUML

Team 001

Page 15



This figure visualizes the general user activities of opening a diagram on ProUML

Team 001

Page 16



This figure visualizes the activities of the transpiler in ProUML

Team 001

Page 17



This figure visualizes the user activities of the diagram editor page in ProUML

Team 001

Page 18



6.5. Design Alternatives & Decision Rationale

This figure visualizes the live-sharing architectural design. (Refer to Section 7.4)

7. System Implementation

7.1. Programming Languages and Tools
Go: One of the languages used on the server-side, which handles server requests [2].

JavaScript/TypeScript: Another language used on the server-side, which handles client
requests to the server to translate imported Java code to UML. It is also used on the client-side
as well for the user interface functionalities [9][10].

React.js: Frontend framework that is used to design the user interface [11].

Supabase: Database library that allows SQL-based storage with user-authentication
capabilities [12].

AntV: Diagram library, which enables the development of a custom diagram editor [3].

VSCode: An integrated development environment (IDE) that comes with several extensions
and tools, which we will use to develop our application [16].

Team 001

Page 19



Next.js:Web development framework created by Vercel enabling us to create a React-based
web application with server-side rendering [18].

Redis:Millisecond response time database that supports live user collaboration while editing
diagrams [19].

Postgres: Relational database management system that will store user account information
such as personal and diagram data [20].

Tailwind: A utility framework that has a variety of customizable CSS classes that can be used
in React applications, which we use to design our user interface [21].

7.2. Coding Conventions
UpperCamelCase: Naming convention for declaring classes, interfaces, types, enums,
decorators, and type parameters [7].

lowerCamelCase: Naming convention for declaring variables, parameters, functions,
methods, properties, and modules aliases [7].

CONSTANT_CASE: Naming convention for declaring global constant values, including
enum values [7].

Module Imports: File imports are lowerCamelCase while files are snake_case [7].

Variables Declarations: Always use const or let to declare variables. Use const by default,
unless a variable needs to be reassigned. Never use var [7].

Exceptions: Always use new Error() when instantiating exceptions, instead of just calling
Error(). Both forms create a new Error instance, but using new is more consistent with how
other objects are instantiated [7].

Switch Statements: All switch statements must contain a default statement group, even if it
contains no code [7].

Equality Checks: Always use triple equals (===) and not equals (!==). The double equality
operators cause error prone type coercions that are hard to understand and slower to implement
for JavaScript Virtual Machines [7].

7.3. Code Version Control
Git: A distributed version control software, which manages the versioning of code repositories
in GitHub [8].

GitHub: A cloud-based service that allows the creation of repositories with the ability to share
these repositories with team members and use Git for version control [15].

7.4. Implementation Alternatives & Decision Rational
The design in section 6.5 shows how our scaled servers interact with each other to support live
sharing. When users make changes from one server, their changes get published through Redis
to a pub/sub channel. Other servers that are subscribed to the same channel can then receive

Team 001

Page 20



these updates and apply the changes to the shared document. The choice of Redis pub/sub as
the communication medium offers several advantages, as discussed below.

Implementation Alternatives:

Direct server-to-server communication: Instead of using Redis pub/sub, servers could directly
communicate with each other using HTTP, WebSocket, or any other suitable protocol.
However, this method would require more complex connection management, and scalability
would be a significant concern.

Message queue systems (e.g., RabbitMQ, Apache Kafka): These systems are designed for
high-throughput messaging and provide strong durability guarantees. However, they can be
more challenging to set up and maintain compared to Redis.

WebRTC: WebRTC enables peer-to-peer communication between clients without the need for
a server. While this method can help reduce server load, it may introduce complexities related
to security and data consistency.

Decision Rationale:

Simplicity: Redis is easy to set up, configure, and maintain. It offers a straightforward way to
implement a publish-subscribe pattern without the need for complex connection management.

Scalability: Redis can handle a high number of concurrent connections and messages, making
it suitable for systems that need to scale horizontally. Furthermore, Redis can be clustered for
even greater scalability.

Performance: Redis is an in-memory data structure store, which allows for fast data access and
low latency in message propagation. This is crucial in a live-sharing environment where quick
updates and real-time collaboration are essential.

Flexibility: The pub/sub feature in Redis supports pattern matching and filtering, which can be
useful for routing messages to the appropriate servers.

Community and support: Redis has a large and active community, which means that there are
numerous resources available for troubleshooting, optimization, and customization.

Conclusion:

Overall, the decision to use Redis pub/sub for connecting servers in the live-sharing system
was driven by its simplicity, scalability, performance, and flexibility. Additionally, the strong
community and support make it a reliable choice for implementing a robust and efficient
real-time collaboration platform.

8. System Testing

8.1. Test Automation Framework
8.1.1. Steps for Installing Test Framework

To use the Go testing framework, the Go language must be installed on our operating system.
This is the only step that needs to be done since Go testing is integrated within the Go language

Team 001

Page 21



[2]. To have Go testing integrated within VS Code, the Go extension must be installed, which
will make executing tests much simpler [16].

8.1.2. Steps for Running Test Cases

To run a Go test, a couple of steps are required. First, a Go test file must be created [17]. In these
test file(s), the Go test functions can then be written [17]. Since we have installed the Go
extension on VS Code, there should be a button above each test function for running it [16].

8.2. Test Case Design
8.2.1. Test Suites

TS-001 (“Java Transpiler File Tests”): A test suite that consists of test cases for the portion
of the Java transpiler that deals with parsing Java files. (Refer to Table 8.2.1 in Appendix T)

8.2.2. Unit Test Cases

TC-001 (“Parse File” Unit Test): A unit test case that tests the parseFile function, which will
receive a test input of a single project file and should have an expected output including the file
name, whether the file’s class implements or extends off of another class, variables and methods
of the file’s class. (Refer to Table 8.2.2 in Appendix T)

TC-002 (“Remove Annotations” Unit Test): A unit test case that tests the removeAnnotations
function, which will receive a test input of a file’s text, which does not include comments and
additional spacing. For the expected output, the file’s text should not include comments, spacing,
and annotations. (Refer to Table 8.2.3 in Appendix T)

TC-003 (“Remove Comments” Unit Test): A unit test case that tests the removeComments
function, which will receive a test input of a file’s text and should have an expected output of the
file’s text without comments. (Refer to Table 8.2.4 in Appendix T)

TC-004 (“Get Package Name” Unit Test): A unit test case that tests the getPackageName
function, which will receive a test input of a file’s text without comments and should have an
expected output of the package name. (Refer to Table 8.2.5 in Appendix T)

TC-005 (“Remove Spacing” Unit Test): A unit test case that tests the removeSpacing function,
which will receive a test input of a file’s text without comments and should have an expected
output of the file’s text without comments and spacing. (Refer to Table 8.2.6 in Appendix T)

TC-006 (“Get File Classes” Unit Test): A unit test case that tests the getFileClasses function,
which will receive a test input of a file’s text with no comments and spacing. For the expected
output, there should be an array of all the classes that are defined within the file’s text.
(Refer to Table 8.2.7 in Appendix T)

TC-007 (“Get Enum Declarations” Unit Test): A unit test case that tests getEnumDeclarations
function, which will receive a test input of a class’s inner-text with no comments and spacing.
For the expected output, there should be an array of Enum declarations.
(Refer to Table 8.2.8 in Appendix T)

TC-008 (“Get Class Associations” Unit Test): A unit test case that tests getClassAssociations

Team 001

Page 22



function, which will receive a test input of an array of class methods and variables. The expected
output should include all class type associations such as string, int, byte, etc.
(Refer to Table 8.2.9 in Appendix T)

8.3. Test Case Execution Report
8.3.1. Unit Testing Report

TC-001 Execution Report:Many tests initially failed due to incorrect function logic. After this
test case finally passed with a variety of test inputs, we added more functionality to the parseFile
function, as we also plan on getting class associations in the function. As a result, our most
recent tests have all failed, as we are currently working on obtaining all class associations within
the parseFile function. (Refer to Table 8.3.1 in Appendix TE)

TC-002 Execution Report:Many tests initially failed due to incorrect function logic. After
debugging and completing the implementation of removeAnnotations, this test case passed with
all possible input cases of file text with annotations and produced the correct expected outputs of
file text without comments, spacing, and annotations. (Refer to Table 8.3.2 in Appendix TE)

TC-003 Execution Report:Many tests initially failed due to incorrect function logic. After
debugging and completing the implementation of removeComments, this test case passed with
all possible input cases of file text with comments and produced the correct expected outputs of
file text without comments. (Refer to Table 8.3.3 in Appendix TE)

TC-004 Execution Report:Many tests initially failed due to incorrect function logic. After
debugging and completing the implementation of getPackageName, this test case passed with all
possible input cases of file text without comments and produced the correct expected outputs of
package names. (Refer to Table 8.3.4 in Appendix TE)

TC-005 Execution Report:Many tests initially failed due to incorrect function logic. After
debugging and completing the implementation of removeSpacing, this test case passed with all
possible input cases of file text and produced the correct expected outputs of file text without
comments. (Refer to Table 8.3.5 in Appendix TE)

TC-006 Execution Report:Many tests initially failed due to incorrect function logic. After this
test case finally passed with a variety of test inputs, we added more functionality to the
getFileClasses function, as we also plan on getting class associations in the function. As a result,
our most recent tests have failed, as we are currently working on obtaining all class associations
within the getFileClasses function. (Refer to Table 8.3.6 in Appendix TE)

TC-007 Execution Report:Many tests initially failed due to incorrect function logic. After
debugging and completing the implementation getEnumDeclarations, this test case passed with
all possible input cases of a class’s inner-text and produced the correct expected outputs of an
array with all enum declarations. (Refer to Table 8.3.7 in Appendix TE)

TC-008 Execution Report:Many tests initially failed due to incorrect function logic. We are
currently still working on the getClassAssociations function, so our recent tests have all failed.
(Refer to Table 8.3.8 in Appendix TE)

Team 001

Page 23



9. Challenges and Open Issues

9.1. Challenges Faced in Requirements Engineering
There are many issues that we faced when it came to developing the requirements,
documentation, and design of ProUML. For one, it is difficult to work with each other on a
consistent basis, due to our conflicting schedules. Additionally, since ProUML is an existing
system, we have had to first make sure we understand the existing system before continuing to
engineer the system. The existing ProUML system also utilizes libraries and frameworks that
some team members have no experience with. So, we also had to make sure we did our
research to learn these used libraries and frameworks. Overall, we faced many challenges
when engineering our requirements; however, these challenges were dealt with sacrifice,
proper communication, review, and research.

10. System Manuals

10.1. Instructions for System Development
10.1.1. How to set up development environment

To set up the development environment for ProUML, many different steps are required. First,
the source code must be downloaded from the existing system’s GitHub repository. Next,
VSCode needs to be installed and opened if it does not yet exist on the development device.
After installing/opening VSCode, the necessary programming languages and extensions must
be installed, which include Go, Node.js, and Prettier code formatter to ensure GitHub
identifies only code changes rather than formatting changes. Then, in a terminal or command
line, we need to navigate to the directory, on our development device, where the project is
located. Lastly, to run the web server that hosts the ProUML website, the “npm run start”
command needs to be run in the terminal or command line.

Team 001

Page 24



12. References
[1] PlantUML in a nutshell, PlantUML.com. Accessed 10/02/2022,
https://plantuml.com/

[2] Go Documentation, Documentation. Accessed 09/15/2022,
https://go.dev/doc/

[3] AntV main, Liven Data Lively. Accessed 09/15/2022,
https://antv.vision/en

[4] AntV X6, X6 JavaScript Diagramming Library. Accessed 09/15/2022,
https://x6.antv.vision/en

[5] AntV XFlow, XFlow. Accessed 09/19/2022,
https://xflow.antv.vision/en-US/

[6] ownCloud, ownCloud.com. Accessed 10/12/2022,
https://owncloud.com/

[7] TypeScript Coding Convention, TypeScript Style Guide. Accessed 10/17/2022,
https://google.github.io/styleguide/tsguide.html

[8] Git Documentation, Documentation. Accessed 09/25/2022,
https://www.git-scm.com/doc

[9] JavaScript Documentation, JavaScript Reference. Accessed 09/25/2022,
https://devdocs.io/javascript/

[10] TypeScript Documentation, Documentation. Accessed 09/25/2022,
https://www.typescriptlang.org/docs/

[11] React Documentation, Getting Started. Accessed 09/25/2022
https://reactjs.org/docs/getting-started.html

[12] Supabase Documentation, Documentation. Accessed 09/25/2022
https://supabase.com/docs

[13] Webbee Documentation, MultiPurpose and UI Kit. Accessed 09/27/2022
https://webbee.maccarianagency.com/docs-introduction

[14] Fiber Documentation, Documentation. Accessed 09/27/2022
https://docs.gofiber.io/

[15] GitHub Documentation, GitHub Docs. Accessed 09/15/2022
https://docs.github.com/en

[16] Visual Studio Code Documentation, Documentation. Accessed 09/15/2022
https://code.visualstudio.com/docs

[17] How To Write Unit Tests in Go, Documentation. Accessed 11/10/2022
https://www.digitalocean.com/community/tutorials/how-to-write-unit-tests-in-go-using-go-test
-and-the-testing-package

[18] Next.js Documentation, Documentation. Accessed 12/05/2022

Team 001

Page 25

https://plantuml.com/
https://go.dev/doc/
https://antv.vision/en
https://x6.antv.vision/en
https://xflow.antv.vision/en-US/
https://owncloud.com/
https://google.github.io/styleguide/tsguide.html
https://www.git-scm.com/doc
https://devdocs.io/javascript/
https://www.typescriptlang.org/docs/
https://reactjs.org/docs/getting-started.html
https://supabase.com/docs
https://webbee.maccarianagency.com/docs-introduction
https://docs.gofiber.io/
https://docs.github.com/en
https://code.visualstudio.com/docs
https://www.digitalocean.com/community/tutorials/how-to-write-unit-tests-in-go-using-go-test-and-the-testing-package
https://www.digitalocean.com/community/tutorials/how-to-write-unit-tests-in-go-using-go-test-and-the-testing-package


https://nextjs.org/docs/getting-started

[19] Redis Documentation, Documentation. Accessed 12/20/2022
https://redis.io/docs/

[20] PostgreSQL Documentation, Documentation. Accessed 12/11/2022
https://www.postgresql.org/docs/

[21] Tailwind CSS Documentation, Documentation. Accessed 01/03/2023
https://tailwindcss.com/docs/installation

Team 001

Page 26

https://nextjs.org/docs/getting-started
https://redis.io/docs/
https://www.postgresql.org/docs/
https://tailwindcss.com/docs/installation


Appendix	U:	Use	Case	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Use	Cases:	1	/	6

Table	4.1.	Use	Case	Index	Table

Project	Name:	ProUML

Use	Case	ID Use	Case	Name Level Author Version

UC-001 Create	UML	Diagram Primary	task Corey	Taylor 0.8

UC-002 Translate	Between	Java	and	UML Primary	task Marin	Mirasol 0.6

UC-003 Save	UML	Project Primary	task Marin	Mirasol 0.4

UC-004 Collaborate	On	ProUML	Project Primary	task Marin	Mirasol 0.2

UC-005 Edit	UML	Diagram Primary	task Corey	Taylor 0.2

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 27



Appendix	U:	Use	Case	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Use	Cases:	2	/	6

Table	4.2.	Use	Case	UC-001

Project	Name: ProUML

Use	Case	ID: UC-001

Use	Case	Name: Create	UML	Diagram

User	Goal: The	user	should	expect	the	system	to	allow	them	to	create	and	edit	a	ProUML	project.

Scope: ProUML	diagram	editing	system

Level: Primary	task

Relevant	User	Reqs: UF-A,UF-B

Relevant	System	Reqs: SF-A-01,SF-A-02,SF-A-03,SF-B-01

Primary	Actor: User

Precondition: Open	diagram	editor

Minimal	Guarantee: Error	messages.

Success	Guarantee: ProUML	project	created.

Trigger:
When	the	user	creates	a	new	ProUML	project	with	source	code,	from	scratch,	or	from	a
provided	template.

Success	Scenario:

Step Actions

1
The	user	shall	either	select	a	template,	upload	source	code,	or	start	a	diagram	from
scratch.

2
The	system	shall	either	generate	a	UML	diagram	template	on	the	diagram	editor,
translate	from	code	to	UML	on	the	diagram	editor,	or	create	an	empty	diagram	on
the	diagram	editor.

3 The	user	shall	be	given	access	to	an	editable	UML	diagram	on	the	diagram	editor.

Extensions: Branching	Scenarios

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 28



Appendix	U:	Use	Case	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Use	Cases:	3	/	6

Table	4.3.	Use	Case	UC-002

Project	Name: ProUML

Use	Case	ID: UC-002

Use	Case	Name: Translate	Between	Java	and	UML

User	Goal:
The	user	should	expect	the	system	to	translate	Java	code	to	UML	diagram	form	and	vice
versa.

Scope: ProUML	package	parser

Level: Primary	task

Relevant	User	Reqs: UF-B

Relevant	System	Reqs: SF-B-01,SF-B-02,SF-B-03,SF-C-02,SF-C-03

Primary	Actor: User

Precondition: Parse	the	files	in	the	imported	package

Minimal	Guarantee: Error	messages.

Success	Guarantee:
A	UML	diagram	in	the	diagram	editor	of	their	source	code	or	source	code	from	their	UML
diagram.

Trigger: When	the	user	imports	a	Java	package.

Success	Scenario:

Step Actions
1 The	user	shall	import	a	Java	package	of	their	choice.

2 The	system	shall	translate	the	imported	Java	code	to	JSON	format	by	parsing.

3 The	system	shall	generate	a	UML	diagram	with	the	JSON	data.

4
The	user	shall	be	given	access	to	the	generated	UML	diagram	on	the	diagram
editor.

Extensions: Branching	Scenarios

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 29



Appendix	U:	Use	Case	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Use	Cases:	4	/	6

Table	4.4.	Use	Case	UC-003

Project	Name: ProUML

Use	Case	ID: UC-003

Use	Case	Name: Save	UML	Project

User	Goal: The	user	should	expect	the	system	to	save	their	ProUML	projects.

Scope: ProUML	database	storage.

Level: Primary	task

Relevant	User	Reqs: UF-C

Relevant	System	Reqs: SF-B-03,SF-C-01,SF-C-02,SF-C-03

Primary	Actor: User

Precondition: Create	text	file	for	UML	project

Minimal	Guarantee: Error	messages.

Success	Guarantee: ProUML	project	saved.

Trigger: When	a	ProUML	project	is	created	and	edited	by	the	user.

Success	Scenario:

Step Actions
1 The	user	shall	open	an	existing	project	or	shall	create	a	new	project.

2 The	user	shall	make	changes	to	this	project.

3 The	system	shall	store	these	changes	in	a	database.

4
The	user	shall	be	able	to	see	these	changes	reflect	on	the	project	when	they	open
the	project	again	on	the	diagram	editor.

Extensions: Branching	Scenarios

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 30



Appendix	U:	Use	Case	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Use	Cases:	5	/	6

Table	4.5.	Use	Case	UC-004

Project	Name: ProUML

Use	Case	ID: UC-004

Use	Case	Name: Collaborate	On	ProUML	Project

User	Goal: The	user	should	expect	the	system	to	allow	live	collaboration	on	a	ProUML	project.

Scope: ProUML	diagram	editing	system

Level: Primary	task

Relevant	User	Reqs: UF-D

Relevant	System	Reqs: SF-D-01,SF-D-02

Primary	Actor: User

Precondition: Communicate	to	web	server

Minimal	Guarantee: Error	messages	and	frozen	diagram	editor.

Success	Guarantee: Live	collaboration	with	other	user(s)	on	a	ProUML	project	with	live	updates.

Trigger: When	the	user	shares	their	ProUML	project	to	another	user.

Success	Scenario:

Step Actions
1 The	user	shall	open	an	existing	project	or	shall	create	a	new	project.

2 The	user	shall	share	this	project	with	another	user.

3 The	system	shall	give	the	added	user	access	the	the	project	owner's	project.

4 The	user	and	shared	user	shall	make	changes	to	the	project	on	the	diagram	editor.

5
The	system	shall	detect	all	changes	made	by	all	users	with	access	to	the	project	via
user	to	server	communication.

6
The	system	shall	reflect	these	changes	for	all	users	via	server	to	user
communication.

7 The	system	shall	save	all	changes	in	real-time.

Extensions: Branching	Scenarios

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 31



Appendix	U:	Use	Case	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Use	Cases:	6	/	6

Table	4.6.	Use	Case	UC-005

Project	Name: ProUML

Use	Case	ID: UC-005

Use	Case	Name: Edit	UML	Diagram

User	Goal: The	user	should	expect	the	system	to	allow	them	to	edit	an	already-existing	diagram.

Scope: ProUML	diagram	editing	system

Level: Primary	task

Relevant	User	Reqs: UF-D

Relevant	System	Reqs: SF-A-01,SF-A-02,SF-A-03,SF-C-02,SF-C-03,SF-D-01,SF-D-02

Primary	Actor: User

Precondition: Open	saved	ProUML	project

Minimal	Guarantee: Error	message

Success	Guarantee: ProUML	project	with	the	latest	saved	edits

Trigger: When	a	saved	ProUML	project	is	opened

Success	Scenario:

Step Actions
1 The	user	shall	open	an	existing	project.

2 The	user	shall	make	changes	to	this	project	on	the	diagram	editor.

3 The	system	shall	reflect	these	changes	on	the	project	by	saving	any	changes	made.

4 The	user	shall	see	these	saved	changes	if	they	open	the	project	again.

Extensions: Branching	Scenarios

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 32



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	1	/	11

Table	4.7.	User	Functional	Requirements:	UF-A

Project	Name: ProUML
Requirement	#: UF-A

Type Functional Non-
Functional

User ☒ ☐
System ☐ ☐

Creation: Sep	27	2022	09:45	AM

Modification: Sep	27	2022	09:45	AM

Description: Users	shall	be	able	to	create	and	edit	UML
diagrams.

Priority: Highest ✔ High Medium Low Lowest
This	Req.	is	Refined	Into: SF-A-01,	SF-A-02,	SF-A-03
Justify	why	UF-A	can	be	completely
covered	by	SF-A-01,	SF-A-02,	SF-A-
03

To	be	added	later

Traceability:
Use	cases	cf. UC-001
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.8.	User	Functional	Requirements:	UF-B

Project	Name: ProUML
Requirement	#: UF-B

Type Functional Non-
Functional

User ☒ ☐
System ☐ ☐

Creation: Sep	27	2022	09:46	AM

Modification: Sep	27	2022	09:46	AM

Description: Users	shall	be	able	to	translate	their	Java	code	to
UML	and	vice	versa.

Priority: Highest ✔ High Medium Low Lowest
This	Req.	is	Refined	Into: SF-B-01,	SF-B-02,	SF-B-03
Justify	why	UF-B	can	be	completely
covered	by	SF-B-01,	SF-B-02,	SF-B-
03

To	be	added	later

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-001,	TC-002,	TC-003,	TC-004,	TC-005,	TC-006,	TC-007,	TC-008

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 33



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	2	/	11

Table	4.9.	User	Functional	Requirements:	UF-C

Project	Name: ProUML
Requirement	#: UF-C

Type Functional Non-
Functional

User ☒ ☐
System ☐ ☐

Creation: Sep	27	2022	09:46	AM

Modification: Sep	27	2022	09:46	AM

Description: Users	shall	be	able	to	save	their	UML	diagram	data
on	ProUML.

Priority: Highest High ✔ Medium Low Lowest
This	Req.	is	Refined	Into: SF-C-01,	SF-C-02,	SF-C-03
Justify	why	UF-C	can	be	completely
covered	by	SF-C-01,	SF-C-02,	SF-C-
03

To	be	added	later

Traceability:
Use	cases	cf. UC-003
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.10.	User	Functional	Requirements:	UF-D

Project	Name: ProUML
Requirement	#: UF-D

Type Functional Non-
Functional

User ☒ ☐
System ☐ ☐

Creation: Sep	27	2022	09:46	AM

Modification: Sep	27	2022	09:47	AM

Description: Users	shall	be	able	to	collaborate	with	others	on
ProUML	projects.

Priority: Highest High Medium ✔ Low Lowest
This	Req.	is	Refined	Into: SF-D-01,	SF-D-02
Justify	why	UF-D	can	be	completely
covered	by	SF-D-01,	SF-D-02 To	be	added	later

Traceability:
Use	cases	cf. UC-004,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 34



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	3	/	11

Table	4.11.	User	NonFunctional	Requirements:	UP-01

Project	Name: ProUML
Requirement	#: UP-01

Type Functional Non-
Functional

User ☐ ☒
System ☐ ☐

Creation: Oct	02	2022	09:59	PM

Modification: Oct	26	2022	05:27	PM

Description: Users	shall	be	able	to	use	a	web	application	that	is
extendable,	customizable,	and	easy	to	use.

Product	(sub-type	below)
Usability	Requirements

Priority: Highest High ✔ Medium Low Lowest
This	Req.	is	Refined	Into: SP-01-01,	SP-01-02,	SP-01-03
Justify	why	UP-01	can	be
completely	covered	by	SP-01-01,
SP-01-02,	SP-01-03

To	be	added	later

Traceability:
Use	cases	cf. N/A
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.12.	System	Functional	Requirements:	SF-A-01

Project	Name: ProUML
Requirement	#: SF-A-01

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	09:47	AM

Modification: Sep	27	2022	09:52	AM

Description: The	system	shall	provide	a	diagram	editor	designed
specifically	for	UML	diagram	editing.

Priority: ✔ Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-A
Justify	why	meeting	SF-A-01	can
contribute	to	the	fulfilment	of	UF-
A

A	UML-based	diagram	editor	helps	to	reduce	user	errors	since
complex	logic	may	be	required	for	the	system	to	comprehend	UML
syntax.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 35



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	4	/	11

Table	4.13.	System	Functional	Requirements:	SF-A-02

Project	Name: ProUML
Requirement	#: SF-A-02

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	09:51	AM

Modification: Sep	27	2022	09:52	AM

Description: The	system	shall	provide	a	button	that	allows	users
to	add	UML	class	shapes	to	their	UML	diagrams.

Priority: Highest High ✔	Medium Low Lowest
This	Req.	is	Engineered	From: UF-A
Justify	why	meeting	SF-A-02	can
contribute	to	the	fulfilment	of	UF-
A

This	gives	the	users	the	abilities	to	add	new	classes	to	their	UML
diagrams.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.14.	System	Functional	Requirements:	SF-A-03

Project	Name: ProUML
Requirement	#: SF-A-03

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	09:53	AM

Modification: Sep	27	2022	09:54	AM

Description:

The	system	shall	provide	a	sidebar	for	UML	class
shapes	when	these	shapes	are	clicked	on,	where	the
class	name,	class	associates,	whether	the	class	is	an
interface	or	not,	attributes	and	methods	can	be
edited	by	the	users.

Priority: Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-A
Justify	why	meeting	SF-A-03	can
contribute	to	the	fulfilment	of	UF-
A

This	allows	users	to	edit	their	UML	class	shapes	on	their	UML
diagrams.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 36



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	5	/	11

Table	4.15.	System	Functional	Requirements:	SF-B-01

Project	Name: ProUML
Requirement	#: SF-B-01

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	09:54	AM

Modification: Oct	26	2022	05:28	PM

Description:

The	system	shall	be	able	to	comprehend	Java	code
into	classes,	class	associations,	and	class	functions
by	understanding	java	class	names,	attributes,	and
keywords.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B
Justify	why	meeting	SF-B-01	can
contribute	to	the	fulfilment	of	UF-
B

This	helps	the	system	for	translating	from	Java	to	UML	since	it
understands	the	needed	portions	of	imported	Java	code	to	add	into	the
UML	diagrams.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-001,	TC-002,	TC-003,	TC-004,	TC-005,	TC-006,	TC-007,	TC-008

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.16.	System	Functional	Requirements:	SF-B-02

Project	Name: ProUML
Requirement	#: SF-B-02

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	09:57	AM

Modification: Oct	26	2022	05:28	PM

Description: The	system	shall	be	able	to	organize	completed	UML
diagrams	into	Java	code.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B
Justify	why	meeting	SF-B-02	can
contribute	to	the	fulfilment	of	UF-
B

This	helps	the	system	with	UML	to	Java	translation	since	the	system
know	how	to	create	Java	code	based	on	the	UML	diagram	information.

Traceability:
Use	cases	cf. UC-002
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 37



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	6	/	11

Table	4.17.	System	Functional	Requirements:	SF-B-03

Project	Name: ProUML
Requirement	#: SF-B-03

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	09:58	AM

Modification: Nov	08	2022	09:38	AM

Description: The	system	shall	preserve	imported	code	that	is	not
needed	in	UML	diagram	translation.

Priority: Highest ✔ High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B
Justify	why	meeting	SF-B-03	can
contribute	to	the	fulfilment	of	UF-
B

This	allows	imported	code,	that	is	not	used	in	the	UML	diagrams,	to	be
saved,	so	that	users	can	get	the	code	back	when	translating	from	UML
to	Java.

Traceability:
Use	cases	cf. UC-002,	UC-003
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.18.	System	Functional	Requirements:	SF-C-01

Project	Name: ProUML
Requirement	#: SF-C-01

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	10:00	AM

Modification: Sep	28	2022	11:32	AM

Description: The	system	shall	support	user	profiles	with
authentication.

Priority: Highest High ✔ Medium Low Lowest
This	Req.	is	Engineered	From: UF-C
Justify	why	meeting	SF-C-01	can
contribute	to	the	fulfilment	of	UF-
C

This	gives	the	system	the	ability	for	user	profiles	to	be	saved	on	a
database,	where	the	data	associated	to	specific	profiles	can	be	saved.

Traceability:
Use	cases	cf. UC-003
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 38



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	7	/	11

Table	4.19.	System	Functional	Requirements:	SF-C-02

Project	Name: ProUML
Requirement	#: SF-C-02

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	10:02	AM

Modification: Sep	27	2022	10:02	AM

Description: The	system	shall	save	user	data	and	associate	the
data	to	specific	user	profiles	in	a	database.

Priority: Highest High ✔ Medium Low Lowest
This	Req.	is	Engineered	From: UF-C
Justify	why	meeting	SF-C-02	can
contribute	to	the	fulfilment	of	UF-
C

This	allows	user	data	to	be	linked	to	their	specific	profile.

Traceability:
Use	cases	cf. UC-002,	UC-003,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.20.	System	Functional	Requirements:	SF-C-03

Project	Name: ProUML
Requirement	#: SF-C-03

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	10:04	AM

Modification: Sep	27	2022	10:05	AM

Description: The	system	shall	translate	UML	diagrams	to	a	text
file	that	can	be	saved	in	a	database.

Priority: Highest High ✔ Medium Low Lowest
This	Req.	is	Engineered	From: UF-C
Justify	why	meeting	SF-C-03	can
contribute	to	the	fulfilment	of	UF-
C

This	allows	UML	diagram	data	to	be	saved	into	a	database.

Traceability:
Use	cases	cf. UC-002,	UC-003,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 39



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	8	/	11

Table	4.21.	System	Functional	Requirements:	SF-D-01

Project	Name: ProUML
Requirement	#: SF-D-01

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	10:05	AM

Modification: Sep	27	2022	10:10	AM

Description: The	system	shall	support	live	sharing	by	using	user-
to-user	communication.

Priority: Highest ✔ High Medium Low Lowest
This	Req.	is	Engineered	From: UF-D
Justify	why	meeting	SF-D-01	can
contribute	to	the	fulfilment	of	UF-
D

This	allows	the	same	shared	ProUML	project	to	update	as	changes	are
made	by	both	users.

Traceability:
Use	cases	cf. UC-004,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.22.	System	Functional	Requirements:	SF-D-02

Project	Name: ProUML
Requirement	#: SF-D-02

Type Functional Non-
Functional

User ☐ ☐
System ☒ ☐

Creation: Sep	27	2022	10:08	AM

Modification: Nov	08	2022	09:40	AM

Description: The	system	shall	be	able	to	save	collaborated
projects	in	real	time.

Priority: Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-D
Justify	why	meeting	SF-D-02	can
contribute	to	the	fulfilment	of	UF-
D

This	allows	the	system	to	automatically	save	and	update	shared
ProUML	projects	between	collaborators.

Traceability:
Use	cases	cf. UC-004,	UC-005
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 40



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	9	/	11

Table	4.23.	System	NonFunctional	Requirements:	SP-01-01

Project	Name: ProUML
Requirement	#: SP-01-01

Type Functional Non-
Functional

User ☐ ☐
System ☐ ☒

Creation: Oct	02	2022	10:00	PM

Modification: Oct	02	2022	10:02	PM

Description: The	system	shall	provide	a	user	login	page	where
users	can	log	into	their	accounts.

Product	(sub-type	below)
Usability	Requirements

Priority: Highest ✔ High Medium Low Lowest
This	Req.	is	Engineered	From: UP-01
Justify	why	meeting	SP-01-01	can
contribute	to	the	fulfilment	of	UP-
01

A	user	account	can	help	to	organize	user	data	into	specific	user
profiles.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Table	4.24.	System	NonFunctional	Requirements:	SP-01-02

Project	Name: ProUML
Requirement	#: SP-01-02

Type Functional Non-
Functional

User ☐ ☐
System ☐ ☒

Creation: Oct	02	2022	10:02	PM

Modification: Oct	02	2022	10:04	PM

Description:

The	system	shall	provide	a	dashboard	page	with	the
ability	to	import	source	code	to	translate	to	Java
code,	start	a	UML	diagram	from	scratch,	or	choose	a
template	design	pattern	diagram	to	start	from.

Product	(sub-type	below)

Usability	Requirements

Priority: Highest High ✔ Medium Low Lowest
This	Req.	is	Engineered	From: UP-01
Justify	why	meeting	SP-01-02	can
contribute	to	the	fulfilment	of	UP-
01

A	dashboard	page	will	allow	the	organization	of	important	and
commonly	utilized	features	on	one	page.

Traceability:
Use	cases	cf. N/A

Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 41



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	10	/	11

Table	4.25.	System	NonFunctional	Requirements:	SP-01-03

Project	Name: ProUML
Requirement	#: SP-01-03

Type Functional Non-
Functional

User ☐ ☐
System ☐ ☒

Creation: Oct	02	2022	10:04	PM

Modification: Oct	02	2022	10:05	PM

Description: The	system	shall	allow	users	to	edit	the	user
interface	with	dark	and	light	modes.

Product	(sub-type	below)
Usability	Requirements

Priority: Highest High Medium Low ✔ Lowest
This	Req.	is	Engineered	From: UP-01
Justify	why	meeting	SP-01-03	can
contribute	to	the	fulfilment	of	UP-
01

This	allows	users	to	customize	the	user	interface	of	the	web
application	to	their	liking.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. Yet	to	be	completed	in	test	case	worksheet!

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2022

Team 001

Page 42



Appendix	R:	Requirements	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Requirements:	11	/	11

Table	4.26.	Mapping	from	user	requirements	to	system	requirements

Project	Name:	ProUML
User	Requirements System	Requirements

Req	ID Description Req	ID Description

UF-A
Users	shall	be	able	to	create	and	edit	UML
diagrams.

SF-A-01 The	system	shall	provide	a	diagram	editor
designed	specifically	for	UML	diagram	editing.

SF-A-02
The	system	shall	provide	a	button	that	allows
users	to	add	UML	class	shapes	to	their	UML
diagrams.

SF-A-03

The	system	shall	provide	a	sidebar	for	UML
class	shapes	when	these	shapes	are	clicked
on,	where	the	class	name,	class	associates,
whether	the	class	is	an	interface	or	not,
attributes	and	methods	can	be	edited	by	the
users.

UF-B Users	shall	be	able	to	translate	their	Java	code
to	UML	and	vice	versa.

SF-B-01

The	system	shall	be	able	to	comprehend	Java
code	into	classes,	class	associations,	and	class
functions	by	understanding	java	class	names,
attributes,	and	keywords.

SF-B-02 The	system	shall	be	able	to	organize
completed	UML	diagrams	into	Java	code.

SF-B-03 The	system	shall	preserve	imported	code	that
is	not	needed	in	UML	diagram	translation.

UF-C Users	shall	be	able	to	save	their	UML	diagram
data	on	ProUML.

SF-C-01 The	system	shall	support	user	profiles	with
authentication.

SF-C-02 The	system	shall	save	user	data	and	associate
the	data	to	specific	user	profiles	in	a	database.

SF-C-03 The	system	shall	translate	UML	diagrams	to	a
text	file	that	can	be	saved	in	a	database.

UF-D Users	shall	be	able	to	collaborate	with	others
on	ProUML	projects.

SF-D-01
The	system	shall	support	live	sharing	by	using
user-to-user	communication.

SF-D-02 The	system	shall	be	able	to	save	collaborated
projects	in	real	time.

UP-01
Users	shall	be	able	to	use	a	web	application
that	is	extendable,	customizable,	and	easy	to
use.

SP-01-01 The	system	shall	provide	a	user	login	page
where	users	can	log	into	their	accounts.

SP-01-02

The	system	shall	provide	a	dashboard	page
with	the	ability	to	import	source	code	to
translate	to	Java	code,	start	a	UML	diagram
from	scratch,	or	choose	a	template	design
pattern	diagram	to	start	from.

SP-01-03 The	system	shall	allow	users	to	edit	the	user
interface	with	dark	and	light	modes.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 43



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	1	/	9

Table	8.2.1.	Test	Suite	TS-001:	Java	Transpiler	File	Tests

Test	Case	ID Test	Stage Test	Case	Description Tested
TC-001 Unit Parse	File Yes
TC-002 Unit Remove	Annotations Yes
TC-003 Unit Remove	Comments Yes
TC-004 Unit Get	Package	Name Yes
TC-005 Unit Remove	Spacing Yes
TC-006 Unit Get	File	Classes Yes
TC-007 Unit Get	Enum	Declarations Yes
TC-008 Unit Get	Class	Relation	Types Yes

Team 001

Page 44



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	2	/	9

Table	8.2.2.	Test	Case	TC-001

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-001	(Unit	Test)
What	To	Test Parse	File
Test	Data
Input Project	file

Expected
Result File	name,	implements,	extends,	variables,	methods

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 45



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	3	/	9

Table	8.2.3.	Test	Case	TC-002

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-002	(Unit	Test)
What	To	Test Remove	Annotations
Test	Data
Input File	text	(no	comments	and	no	spacing)

Expected
Result File	text	(no	comments,	no	spacing,	no	annotations)

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 46



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	4	/	9

Table	8.2.4.	Test	Case	TC-003

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-003	(Unit	Test)
What	To	Test Remove	Comments
Test	Data
Input File	text

Expected
Result File	text	(no	comments)

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 47



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	5	/	9

Table	8.2.5.	Test	Case	TC-004

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-004	(Unit	Test)
What	To	Test Get	Package	Name
Test	Data
Input File	text	(no	comments)

Expected
Result Package	name

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 48



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	6	/	9

Table	8.2.6.	Test	Case	TC-005

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-005	(Unit	Test)
What	To	Test Remove	Spacing
Test	Data
Input File	text	(no	comments)

Expected
Result File	text	(no	comments	and	no	spacing)

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 49



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	7	/	9

Table	8.2.7.	Test	Case	TC-006

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-006	(Unit	Test)
What	To	Test Get	File	Classes
Test	Data
Input File	text	(no	comments	and	no	spacing)

Expected
Result Array	of	classes

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 50



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	8	/	9

Table	8.2.8.	Test	Case	TC-007

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-007	(Unit	Test)
What	To	Test Get	Enum	Declarations
Test	Data
Input Enum	class	inner-text	(no	comments	and	no	spacing)

Expected
Result Array	of	declarations

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 51



Appendix	T:	Test	Cases CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Cases:	9	/	9

Table	8.2.9.	Test	Case	TC-008

Project
Name: ProUML

Test	Suite TS-001:	Java	Transpiler	File	Tests
Test	Case	ID TC-008	(Unit	Test)
What	To	Test Get	Class	Relation	Types
Test	Data
Input Array	of	class	methods	and	variables

Expected
Result

Class	type	associations	and	dependencies	(includes	all	types	such	as	String,	int,	byte,
etc.)

Traceability

Relevant	User	Req.(s) UF-B
Relevant	System	Req.(s) SF-B-01
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 52



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	1	/	8

Table	8.3.1.	Execution	Report	of	Test	Case	TC-001

Project	Name: ProUML
Test	Case	ID: TC-001
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestParseFile

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

10/23/2022 N/A Fail

2
All	Team
Members

10/25/2022 N/A Fail

3
All	Team
Members

10/29/2022 N/A Fail

4
All	Team
Members

10/30/2022 N/A Pass

5
All	Team
Members

11/02/2022 N/A Pass

6
All	Team
Members

11/05/2022 N/A Pass

7
All	Team
Members

11/08/2022 N/A Pass

8
All	Team
Members

11/12/2022 N/A Fail

Added	class
associations	into
expected	return	value.
Not	yet	implemented
into	code.

9
All	Team
Members

11/16/2022 N/A Fail

10
All	Team
Members

11/21/2022 N/A Fail

11
All	Team
Members

11/28/2022 N/A Fail

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	this	test	case
finally	passed	with	a	variety	of	test	inputs,	we	added	more	functionality	to	the
parseFile	function,	as	we	also	plan	on	getting	class	associations	in	the	function.	As
a	result,	our	most	recent	tests	have	all	failed,	as	we	are	currently	working	on
obtaining	all	class	associations	within	the	parseFile	function.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 53



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	2	/	8

Table	8.3.2.	Execution	Report	of	Test	Case	TC-002

Project	Name: ProUML
Test	Case	ID: TC-002
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestRemoveAnnotations

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

10/23/2022 N/A Fail

2
All	Team
Members

10/25/2022 N/A Fail

3
All	Team
Members

10/29/2022 N/A Pass

4
All	Team
Members

10/30/2022 N/A Pass

5
All	Team
Members

11/02/2022 N/A Pass

6
All	Team
Members

11/05/2022 N/A Pass

7
All	Team
Members

11/08/2022 N/A Pass

8
All	Team
Members

11/12/2022 N/A Pass

9
All	Team
Members

11/16/2022 N/A Pass

10
All	Team
Members

11/21/2022 N/A Pass

11
All	Team
Members

11/28/2022 N/A Pass

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	debugging	and
completing	the	implementation	of	removeAnnotations,	this	test	case	passed	with
all	possible	input	cases	of	file	text	with	annotations	and	produced	the	correct
expected	outputs	of	file	text	without	comments,	spacing,	and	annotations.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 54



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	3	/	8

Table	8.3.3.	Execution	Report	of	Test	Case	TC-003

Project	Name: ProUML
Test	Case	ID: TC-003
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestRemoveComments

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

10/30/2022 N/A Fail

2
All	Team
Members

11/02/2022 N/A Fail

3
All	Team
Members

11/05/2022 N/A Pass

4
All	Team
Members

11/08/2022 N/A Pass

5
All	Team
Members

11/12/2022 N/A Pass

6
All	Team
Members

11/16/2022 N/A Pass

7
All	Team
Members

11/21/2022 N/A Pass

8
All	Team
Members

11/28/2022 N/A Pass

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	debugging	and
completing	the	implementation	of	removeComments,	this	test	case	passed	with	all
possible	input	cases	of	file	text	with	comments	and	produced	the	correct	expected
outputs	of	file	text	without	comments.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 55



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	4	/	8

Table	8.3.4.	Execution	Report	of	Test	Case	TC-004

Project	Name: ProUML
Test	Case	ID: TC-004
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestGetPackageName

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

10/30/2022 N/A Fail

2
All	Team
Members

11/02/2022 N/A Fail

3
All	Team
Members

11/05/2022 N/A Pass

4
All	Team
Members

11/08/2022 N/A Pass

5
All	Team
Members

11/12/2022 N/A Pass

6
All	Team
Members

11/16/2022 N/A Pass

7
All	Team
Members

11/21/2022 N/A Pass

8
All	Team
Members

11/28/2022 N/A Pass

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	debugging	and
completing	the	implementation	of	getPackageName,	this	test	case	passed	with	all
possible	input	cases	of	file	text	without	comments	and	produced	the	correct
expected	outputs	of	package	names.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 56



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	5	/	8

Table	8.3.5.	Execution	Report	of	Test	Case	TC-005

Project	Name: ProUML
Test	Case	ID: TC-005
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestRemoveSpacing

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

10/23/2022 N/A Fail

2
All	Team
Members

10/25/2022 N/A Fail

3
All	Team
Members

10/29/2022 N/A Fail

4
All	Team
Members

10/30/2022 N/A Fail

5
All	Team
Members

11/02/2022 N/A Fail

6
All	Team
Members

11/05/2022 N/A Pass

7
All	Team
Members

11/08/2022 N/A Pass

8
All	Team
Members

11/12/2022 N/A Pass

9
All	Team
Members

11/16/2022 N/A Pass

10
All	Team
Members

11/21/2022 N/A Pass

11
All	Team
Members

11/28/2022 N/A Pass

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	debugging	and
completing	the	implementation	of	removeSpacing,	this	test	case	passed	with	all
possible	input	cases	of	file	text	and	produced	the	correct	expected	outputs	of	file
text	without	comments.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 57



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	6	/	8

Table	8.3.6.	Execution	Report	of	Test	Case	TC-006

Project	Name: ProUML
Test	Case	ID: TC-006
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestGetFileClasses

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

11/02/2022 N/A Fail

2
All	Team
Members

11/05/2022 N/A Fail

3
All	Team
Members

11/08/2022 N/A Pass

4
All	Team
Members

11/12/2022 N/A Pass

5
All	Team
Members

11/16/2022 N/A Pass

6
All	Team
Members

11/21/2022 N/A Fail

Added	class
associations	into
expected	return	value.
Not	yet	implemented
into	code.

7
All	Team
Members

11/28/2022 N/A Fail

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	this	test	case
finally	passed	with	a	variety	of	test	inputs,	we	added	more	functionality	to	the
getFileClasses	function,	as	we	also	plan	on	getting	class	associations	in	the
function.	As	a	result,	our	most	recent	tests	have	failed,	as	we	are	currently
working	on	obtaining	all	class	associations	within	the	getFileClasses	function.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 58



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	7	/	8

Table	8.3.7.	Execution	Report	of	Test	Case	TC-007

Project	Name: ProUML
Test	Case	ID: TC-007
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestGetEnumDeclarations

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

11/08/2022 N/A Fail

2
All	Team
Members

11/12/2022 N/A Fail

3
All	Team
Members

11/16/2022 N/A Pass

4
All	Team
Members

11/21/2022 N/A Pass

5
All	Team
Members

11/28/2022 N/A Pass

Execution	Summary:

Many	tests	initially	failed	due	to	incorrect	function	logic.	After	debugging	and
completing	the	implementation	getEnumDeclarations,	this	test	case	passed	with
all	possible	input	cases	of	a	class’s	inner-text	and	produced	the	correct	expected
outputs	of	an	array	with	all	enum	declarations.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 59



Appendix	TE:	Test	Execution	Report CSU-SM-CSIS-Class2023-Sec-001-Team-001

Test	Execution:	8	/	8

Table	8.3.8.	Execution	Report	of	Test	Case	TC-008

Project	Name: ProUML
Test	Case	ID: TC-008
Testing	Tools	Used: Go	Testing
Testing	Type: Functional	testing

Execution	Steps:
1 cd	backend/transpiler/java
2 go	test	-run	TestGetClassRelationTypes

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
All	Team
Members

11/12/2022 N/A Fail

2
All	Team
Members

11/16/2022 N/A Fail

3
All	Team
Members

11/21/2022 N/A Fail

4
All	Team
Members

11/28/2022 N/A Fail

Execution	Summary: Many	tests	initially	failed	due	to	incorrect	function	logic.	We	are	currently	still
working	on	the	getClassRelationTypes	function,	so	our	recent	tests	have	all	failed.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2022

Team 001

Page 60


	Cover(3.5)
	Body(3.5)
	AppendixU
	AppendixR
	AppendixT
	AppendixTE



